
FINAL REPORT

TO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Grant NGR-33-010-1 6 6

i 4 H J

Mp

Otij

Principal Investigator: Professor George H. Morrison e+ n

Ithaca, New York 14850

a

Date: January 31, 1974 0

C 0

0-t



CONTENTS

I. Lunar Samples

A. Samples Analyzed

B. Apollo 16 Results

C. Apollo 17 Results

II. Allende Meteorite

III. Determination of Noble Metals

IV. Papers Published Under Grant



I. Lunar Samples

A. Samples Analyzed

Apollo 16 Apollo 17

60501,35 soil 72161,13 soil

64501,17 soil 78501,27 soil

60315,53 igneous rock 72701,31 soil

60017,71 anorthositic gabbro 73141,15 soil

62255,19 " " 74220,38 orange soil

71055,35 subfloor basalt

72275,96 norite breccia

Up to 57 elements including majors, minors, rare earths (REE) and

other trace elements have been determined in the above lunar samples. The

analytical techniques used were spark source mass spectrometry (SSMS) and

neutron activation analysis (NAA). The latter was done either instrumentally

(INAA) or with group radiochemical separations (RNAA). The details of these

methods have been published by this group elsewhere (1-3).

B. Apollo 16 Results

A number of striking differences in abundances of the elements in lunar

soils at the various sites can be observed. With regard to the major elements

only Si is about the same at all the sites. Apollo 16 has the lowest amounts

of Fe, Ti, Mg, K, Mn, and Cr and the highest concentrations of Al and Ca.

The high concentration of Al and Ca in the 60501 soil indicates that the lunar

highlands are rich in these two elements. X-ray fluorescence experiments flown

in lunar orbit during the Apollo 16 mission confirm these findings. Apollo 14
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has the highest concentration of K and Na, and the lowest concentrations of

Fe and Cr. Titanium is particularly high in the Apollo 11 soil. Zr, Ba and Rb

(as well as Y and Nb) show a steady increase in going from Apollo 16, Luna 16,

Apollos 15, 11, 12 and 14 sites. Lowest amounts of Cs, Cu, Ga, Mo, Sc, V,

and Zn are found in 60501 soil. The depletion of Cs, Sc and V is particularly

striking. Thus the material is depleted in siderophilic elements-Fe, (Co),

Mo, Cu, Ga; chalcophilic elements--Zn, Ga, Mo, Fe; and lithophiles-(Na),

K, (Rb), Cs, Mg, Sc, Ti, Zr, V, Cr, and Mn. However, as mentioned earlier

the lithophiles--Ca and Al---are particularly enriched in the 60501 soil. The

radiogenic elements Pb, Th and U as well as Hf and Rb are highest in Apollo 14

soil. Lowest amounts of these elements are found in Luna 16 soil with the ex-

ception of Hf which is lowest in Apollo 15 soil.

The rare earth elements are strikingly enriched in the Apollo 14 soil as

compared with other sites. The soils from Apollo 11 and 12 resemble each

other as do Apollo 15 and Luna 16. In general 60501 soil has lowest amounts

of rare earth elements. This is again the same trend which was shown above

in the depletion of lithophile elements. The negative Eu anomaly is greatest

for Apollo 14, while it is very shallow for Apollo 15 and 16 soils. The lighter

rare earths are fractionated somewhat from the heavier rare earths in Apollo 12,

and to a much greater extent in Apollo 14.

The compositions of the soils of most of the lunar sites appear at each

site to be approximated by the linear combination of three major indigenous

rock types with the addition of a fourth "extra-lunar" component (4-6). One

of the indigenous components appears to have a more or less universal
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moon-wide identification as a KREEP-enriched component and the proportion

of the other two (mare basalt and anorthositic rock) depends on the sampling

location. At some of the sites the soil can be approximated by a mixture of

KREEP with either the mare basalt component or anorthositic component, and

at other sites all three of the indigenous components must be considered.

A mixing model for the soil composition at the Apollo 16 site was made,

where the country rock end members are represented by the two rock samples

available to us for analysis; i.e. KREEP basalt, 60315 and a white fragment

from 60017, an anorthositic gabbroic rock. In our study, soils 60501 and 64501

are viewed as the linear combination of these two rocks. Obviously these two.

rocks are not the ultimate end members but rather somewhere in between the

linear combination. It should be noted that Bansal et al. (7) suggested that

the Apollo 16 soils are mechanical mixtures of two end members, one of which

must approach the composition of pure plagioclase and the other consisting

of rocks rich in LIL elements (KREEP-like basaltic rocks).

A method of least-squares using normalized concentrations for each ele-

ment was employed. The residuals in the material balance using the soil and

the two end members were minimized using 40 of the elements analyzed and

varying the proportions of the rock types. The following proportion of end

members were obtained for each soil: soil 60501, 25% 60315 and 75% 600171

and soil 64501, 22% 60315 and 78% 60017. These results are not very differ-

ent from the estimate made by the Apollo 16 LSPET (8) report of about 80%

anorthositic component. The model was also tested using our KREEP-like

basalt 60315 and an anorthositic rock, 67455, analyzed by Wh'nke (9) to
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constitute our soils. The results were: soil 60501, 29% 60315 and 71% 67455;

and soil 64501, 26% 60315 and 74% 67455. Rock 67455 is a more anorthositic

rock than our 60017, and therefore more KREEP basalt is required. Comparable

proportions of end members were obtained using our model to constitute soils

68501 and 64421 analyzed by Bansal et al. (7).

Those elements that are in clear excess in the soils relative to the chosen

lunar source rocks used in our mixing model are Cu and Zn. The Zn values in

the soils analyzed here are in good agreement with those reported by Duncan et al.

(10), Baedecker et al. (11) and Krahenbuhl et al. (12). Soil 64501 has incompatibly

high Ga as well as the other elements mentioned. We believe that this suite of

elements is an index of extra-lunar material of C-1 composition in Apollo 16

soils in addition to those used by Baedecker et al. (11), although Zn may have

an indigenous origin as well. The excess Cu to Ni ratio establishes the C-1

source relative to a pure siderophile source of extra -lunar material.

Nickel presented a difficulty in this model because our sample of KREEP-

like basalt contains a very high concentration (1380 ppm Ni compared to the

LSPET (8) value of 191 ppm Ni). The anomalously high value of Ni in our

sample is accompanied by a correspondingly high value of Co, and indicates

that our sample probably contains a meteroritic component.

We subsequently received and analyzed another anorthositic gabbro

62255,19 whose composition corresponds to an almost pure plagioclase type

rock. This was substituted in our mixing model instead of rock 60017. A

30:70 mix resulted for soil 64501 and 33:68 for soil 60501 for KREEP basalt

and anorthositic gabbro, respectively.



C. Apollo 17 Results

The composition of basalt sample 71055 is generally similar to those

analyzed by APET (13), except for a higher nickel content observed by us.

The basalt has a very high titanium content (7.11%) similar to Apollo 11

basalts. It has a high iron content and correspondingly high Fe/Mg ratio

similar to other mare basalts from Apollos 11, 12, 15 and Luna 16. It has

a low sodium concentration, which along with high iron, magnesium, and

titanium values distinguishes it from terrestrial basalts.

Sample 72275 is a noritic breccia which is fairly rich in KREEP compo-

nent. It resembles KREEP-like rocks sampled by Apollo 16, e.g. 60315.

KREEP associated elements Zr, Y, U, Th, Rb, Nb, Li, Hf, and Ba are also

high in 72275. However, among the Apollo 17 noritic breccias, this sample

which is petrographically classified as a foliated light gray breccia, is

characterized by lower Sr and Na and higher P, Y, and Zr content than other

breccias. It has a lower MgO/FeO ratio and higher FeO and CaO concentra-

tions with about the same A12 0 3 concentration. This implies that the foliated

light gray breccias were derived from a different lithological unit than other

noritic breccias.

The soils 72161 and 78501 are from the dark mantle, 72701 and 73141

from the light mantle, and 74220 is the orange soil. Soils 72701 and 73141

are very similar in composition, whereas 72161 and 78501 have noticeable

differences in concentrations of some trace elements. In addition to dark

mantle, soil 78501 probably contains subfloor material and debris mass

wasted from the Sculptured Hills.



The Ni content of these soils is fairly constant (-200 ppm). Since

basalts, which account for the bulk of these soils, are very low in Ni content

(13 ppm in 71055), most of the Ni in the soils can be attributed to meteoritic

contribution. This corresponds to N 1% of a chondritic component.

The Zn content of both basaltic and massif rocks is low (2-4 ppm), so

that the higher concentrations observed in four soils reflects the orange glass

content of these soils. Thus, the orange glass content of light mantle soils

is lowest and of dark mantle soils is highest.

The chondrite normalized REE patterns for all four soils are similar

with fairly shallow negative Eu anomaly. Rock 62255 is almost pure plagio-

clase and exhibits a pronounced positive Eu anomaly, as expected. Rock

72275, a KREEP-rich norite, has significantly higher REE abundances and a

sharp negative Eu anomaly reflecting the KREEP-like components in this rock.

The orange soil sample 74220,38 is distinctly different from the other

Apollo 17 soils. It is very low in Al, Ca, light rare earths, Ni, P, Rb, S,

Th, U, and W, and enriched in Ti, Fe, Mg, Mn, Cr, Co, Cu, Ga, Pb, Sc,

V, and Zn. Enrichment of the transition elements and Mg is especially strik-

ing. The orange color is attributed to the high Ti content and is similar to

orange glass from other missions. The remarkably low Al content (3.22%) is

even lower than in the basaltic lavas. Such basalts have extremely low

Zn, Cu, and Ni contents. Orange soil is even richer in Zn and Cu than

Apollo 11 soil 10085, which contains meteoritic debris as well as local

basalt fragments. The exceptionally high Zn content (244 ppm) is not

equaled by any lunar samples analyzed so far. The closest is Apollo 15
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green glass (60-100 ppm). This high volatile element content of orange soil

implies a source other than that of basalts.

A comparison of the overall composition of orange soil with glass samples

from other missions reveals that it is definitely unlike highly aluminous

glasses from Apollos 11, 12, 14 and Luna 16 soils, Apollo 15 green glasses,

and Apollo 16 or Luna 20 glasses, or olivine phenocrysts from Apollo 12 ba-

salts. Only the Apollo 11 red-brown to red-black glasses of Tranquillitatis B

soil type are very close in chemical composition to the orange soil. Even

the colorless, gray, yellow, and green glasses from Apollo 11 are different

from the orange soil.

The unusual composition of orange soil is best explained as due to

melting of mineral debris on the lunar surface by meteoritic impact giving

splashes of liquid droplets. The impacting material must have been unusually

high in Zn, Cu, and Ga and must have been dissolved in the liquid produced

by the impact event finally crystallizing into "orange soil. " Unexplained

is the very high Zn content which cannot be attributed to any reasonable

amount of meteoritic contamination during impact.

II. Allende Meteorite

While awaiting the receipt of the Apollo 16 samples, a detailed analysis

was performed on a sample of the Allende meteorite. It has been suggested

that this meteorite may serve as a "standard meteorite" powder similar to

standard rocks provided by the USGS. In addition, the calcium-rich white

inclusions of Allende are proposed as a component for the formation of the

moon.
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Using spark source mass spectrometry and neutron activation analysis,

57 elements were determined. The data have been published elsewhere (14).

III. Determination of Noble Metals

Because of the very low abundances of noble metals in most terrestrial

and lunar materials, very little data exist on their concentrations in geological

materials, even though considerable effort has been expended to develop ade-

quate methods for their determination.

A method was therefore developed to determine ppb amounts of noble

metals in terrestrial samples. The details of the method are published else-

where (15). In essence, the method determines Au, Ru, Pd, Os, Ir and Pt

in geological materials using thermal neutron irradiation, selective adsorption

of the noble metal group on Srafion NMRR ion exchange resin, and high reso-

lution gamma spectrometry.

The method was applied to the analysis of USGS standard rocks W-1,

PCC-1, and DTS-1, as well as the Allende meteorite and lunar soil 72701.

The agreement between literature values and the results obtained is excellent

wherever data was available. The Pt value reported here for 72701 is the

first value for this element reported for any lunar sample.
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